
20 CROSSTALK The Journal of Defense Software Engineering January 1999

The DoD distributed simula-
tion domain encompasses a
variety of uses, architectures,

and techniques. DoD uses distributed
simulation for test and evaluation,
analysis, and training. Each of these
categories brings with it different re-
quirements for the distributed simula-
tion architecture. Currently, DoD has
simulations that use a totally distrib-
uted approach, as discussed in [1] and
[2] but has mandated that all simula-
tions use a middleware approach as
defined by the high-level architecture
(HLA) discussed in [3,4,5]. HLA is
designed to support a family of simula-
tions such as uses mentioned above and
aggregate, disaggregate, and component
levels of detail.

Failures in distributed training
simulations can cause unrealistic behav-
ior. Should a simulator crash or lose its
link to the rest of the simulation, vir-
tual objects the simulator owns will
continue under the control of their
dead-reckoning algorithms until they are
removed from the simulation. There are
ways to provide more realistic behavior.
Starting a new copy of the simulation
on a different host can re-establish
sanity if the simulator requires little or
no human involvement. For human-in-
the-loop trainers, this approach is not
practical because it is too expensive to
maintain simulators with crews that do
nothing but wait around for failures. To
substitute a computer-controlled simu-
lator for the absent trainer is more cost-

effective and also can successfully main-
tain simulation realism.

In some cases, a manned simulator
would only be lost temporarily. When
the human-in-the-loop system returns,
it cannot simply be left out of the exer-
cise as would be a computer-controlled
simulator. The crew represents a signifi-
cant investment in resources and train-
ing opportunity. To give the manned
simulator control of its original objects
will not always be appropriate, such as
returning control of the original heli-
copter to a user when it has already
crashed on the virtual battlefield. To re-
introduce a simulator back into a simu-
lation is a complicated decision that
requires knowledge of the virtual world
as well as the simulation configuration.

We call the automatic restructuring
of a distributed application in accor-
dance with a set of rules “compensating
reconfiguration.” We have developed a
software engineering environment that
could support its inclusion in DoD
distributed simulations. The compen-
sating reconfiguration component cre-
ated through this environment imposes
an extremely small performance penalty
on the simulation and is not an unrea-
sonably complex burden for the simula-
tion builders.

Related Work
In the DoD distributed simulation
domain, there has been an abundance
of work that defines the HLA [3,4,5].
The HLA addresses the late joining,
early departure, and changing owner-

ship of federates (simulator compo-
nents). However, fault tolerance does
not seem to have been adequately ad-
dressed, and certainly it has not been
addressed within the context of de-
mands such as fewer support staff and
human-in-the-loop simulations [1].

The gluing together of disparate
heterogeneous distributed systems
forms the foundation of HLA. Under-
standing interconnection abstractions
like Common Object Request Broker
Architecture [6] and Polylith [7] is
critical to understanding HLA. Using
standard interconnection abstractions
makes the development of a software
engineering environment practical.
These abstractions make it possible for
our framework to work with existing
systems without resorting to changing
any of the components. We feel that
compensating reconfiguration is best
built into the interconnection abstrac-
tion and provided as a service.

The end result of compensating
reconfiguration is the dynamic recon-
figuration of the application. There are
two primary approaches to dynamic
reconfiguration. The Conic approach
moves the application to a quiescent
state prior to reconfiguration [8]. This
approach requires logic located in each
component that will migrate a compo-
nent to a quiescent state in finite time.
This technique is more appropriate for
simulations that do not run on wall-
clock time. A virtual simulation cannot
achieve a quiescent state and still main-
tain realistic behavior. C. Hofmeister’s

Building Self-Reconfiguring Distributed Simulations
Using Compensating Reconfiguration

Lt. Col. Don Welch, U.S. Military Academy
James Purtilo, University of Maryland

In distributed training simulations, simulators can lose their connections to the rest of the
simulation. When this happens, the uncontrolled virtual entities exhibit unrealistic be-
havior. To avoid unrealistic behavior, the distributed simulation must reconfigure itself
based on the state of the simulation software and the virtual world. We call the automatic
restructuring of a distributed application with respect to a set of rules “compensating
reconfiguration,” and we have developed a software engineering environment that could
be used to support its inclusion in Department of Defense (DoD) distributed simulations.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 21January 1999

approach is better suited for virtual
simulations [9]. She requires that the
components involved divulge their
internal state, then loads this into the
new component. Since simulators in a
distributed simulation continuously
divulge their internal state (which is
most important to the rest of the simu-
lation), the software is ready for dy-
namic reconfiguration without change.

N. Minsky has used laws to ensure
consistency in the software architecture
as it evolves. A set of invariant laws is
enforced throughout the lifecycle of the
software using independent monitoring
[10]. We focus on keeping the behavior
of the distributed system consistent
throughout its execution.

Compensating Reconfiguration
Distributed simulations require dy-
namic reconfiguration to keep correct
execution in the presence of external
failures. The proper compensation for a
failure is not always readily apparent.
Making the correct compensation re-
quires taking the current software and
hardware configuration and status into
account and can require the virtual
world state and a mapping between the
two. Current dynamic reconfiguration
techniques provide only for considering
system configuration and not the appli-
cation state.

To compensate for an external con-
dition can involve complex decisions.
Straightforward, like-for-like substitu-
tions are not always appropriate. To
compensate reconfigurations involves
heterogeneous changes to the simula-
tion. By heterogeneous, we mean that a
different type of simulator is substi-
tuted for the original. In the motivating
example, it is impractical to keep a
crewed simulator as the backup to the
attack helicopter flight simulator. An-
other factor that adds to the complexity
is that compensation decisions cannot
rely solely on the current configuration
of the distributed simulation. As shown
in the motivating example, the internal
state of the simulators must sometimes
be taken into account. Since the system
configuration and the simulator state
are not static, the compensation logic
must be dynamic, too.

The main concepts of compensating
reconfiguration are first, mapping the
virtual world state and system configu-
ration; and second, using an abstract
interface to build the decision logic. To
maintain this mapping in software is
complex. When requirements change,
the more concentrated the code
changes, the easier code changes are to
make and the less likely they are to be
in error. Using an abstract interface for
the reconfiguration and compensation
decisions allows the user to keep in
mind the big picture and not become
distracted by the dynamic reconfigura-
tion implementation details.

We have built Bullpen, a tool to
build compensating reconfiguration
software in the distributed simulation
domain. We named it Bullpen because
as baseball managers must change their
pitchers to meet the changing condi-
tions of a game, our software must
substitute simulators. Bullpen currently
runs as an invisible support utility. It
could just as easily be integrated into
the run-time infrastructure if one is
used. When it detects a condition of
interest, Bullpen makes two decisions.
The first decision determines the ap-
propriate compensation for the condi-
tion. The second is how to dynamically
change the structure of the distributed
simulation to meet the desired configu-
ration and maintain realistic simulation
behavior.

Results
Our goal has been to produce compen-
sating reconfiguration code with less
effort that also is more accurate than
using only a high-level programming
language. In addition, we want to en-
sure that the compensating reconfigu-
ration code can perform all the recon-
figurations required by current applica-
tions. Finally, we want the execution
speed penalty to be low enough to
ensure that this is a practical approach.

We did a pilot study to determine
whether our tool warrants further
evaluation. In this pilot study, we used
a number of different scenarios, all
based either on military uses or military
simulation exercises. For each scenario,
we built the initial versions of the com-

pensating reconfiguration software
either in Java™ or with Bullpen. We
then changed the requirements for the
simulation and modified the software
to match the new requirements. As we
built and tested, we collected the met-
rics discussed below.

A lack of expressiveness in Bullpen’s
abstract interface would manifest itself in
the worst case by our inability to per-
form one or more of the requirements
changes. Since we were able to do all the
changes from the scenario, Bullpen
satisfies this provision. A less drastic lack
of expressiveness would show itself
through increased effort and complexity
of the code needed to implement the
changes. We did not face this situation,
so we concluded that Bullpen is expres-
sive enough as it stands.

We looked at six categories of re-
quirements change. Changes to the
reconfiguration interface—or the ways
the reconfiguration code must interact
with the distributed simulation infra-
structure—are part of this category. An
example is a new release of the run-time
infrastructure with an updated applica-
tion programming interface. Changes
to the Reconfiguration Policy represent
revisions to the choice of possible com-
pensating dynamic reconfigurations.
The Virtual Configuration category
contains changes to the simulated
world. This includes both the number
and the associations between virtual
entities. Likewise, changes to the Sys-
tem Configuration category include
changes to the hosts or the software
components that compose the distrib-
uted simulation. Changes to Virtual
and System Configuration include
requirements changes that involve the
virtual world, the system configuration,
and the mapping between them. The
final category includes changes to the
Conditions handled. An example of a
condition is the return of a simulator.
The Reconfiguration Policy and System
Configuration are the changes the
simulation builders are most likely to
make during the prototyping phase.
Changes to the Virtual Configuration
are most likely to come from the users
as they refine their concept for the
simulation.

Building Self-Reconfiguring Distributed Simulations Using Compensating Reconfiguration

22 CROSSTALK The Journal of Defense Software Engineering January 1999

Effort
We focused on the effort required to implement require-
ments changes. Our experience with the military domain
shows that the requirements will change so many times that
the effort spent to modify the compensating reconfiguration
code will overshadow the initial construction effort. In addi-
tion, the ease of implementing changes makes for an effective
prototyping tool. The effort metrics we used were source
lines of code (SLOC)1 and time. The initial effort using
Bullpen averaged 84 percent of the effort required to imple-
ment the same functional system using only high-level code
(Table 1).

The effort required to change the functionality of the
compensating reconfiguration software was much less with
Bullpen than with a high-level source code approach. Bullpen
did not perform as well when the changes were to the System
Configuration as it did in the other categories, but these were
the simplest changes to implement in both systems.

Complexity
We also examined the complexity of the modifications as a
result of the requirements change. We reasoned that less
complex code is easier to build and less error prone. We used
three metrics to determine complexity: number of locations
in the code modified, number of defects found during inte-
gration test, and repair time for those defects (which includes
all types of defects, regardless of their cause). Our reasoning
was that more complex code will tend to produce more de-
fects, and those defects will be more difficult to repair. The
complexity of the code used to build the initial systems using
Bullpen was only 68 percent of the complexity of the high-
level code version.

In the most common categories of requirements change,
Bullpen showed the best performance (Table 2). As the com-
position of the simulation evolved, Bullpen was far less com-
plex to deal with than high-level language. The changes to
the conditions category were the worst performers again. In
the areas of change most commonly encountered in military
simulations, Bullpen far out-performed the conventional
approach.

Correct Reconfigurations
We also looked at Bullpen’s tendency to produce correct
reconfigurations. We define a correct reconfiguration as one

that results in all objects in the virtual world being controlled
by only one executing simulator. We assume that all the
simulators in the distributed simulation have been validated
and verified. Therefore, objects under the control of a vali-
dated and verified simulator will behave realistically. An ob-
ject not under control of a functioning simulator is bound to
eventually behave unrealistically. Should an object be under
the simultaneous control of two simulators, it also is not
guaranteed to behave in a realistic manner. We assume that a
compensating reconfiguration component that makes more
incorrect reconfigurations in integration test is more likely to
make incorrect reconfigurations in actual use. Bullpen
showed that is it equal to or better than high-level language
in all categories (Table 3).

Response Time
Finally, we looked at response time. Abstract interfaces gener-
ally impose a performance penalty as a cost of an easier-to-
understand interface. For Bullpen to be a worthwhile tool,
the performance penalty must be within acceptable limits.
Since 100 milliseconds is perceived as instantaneous by hu-
mans, we were willing to accept a penalty of about 100 milli-
seconds. Bullpen-generated code took an average of 102
milliseconds longer to determine the correct reconfiguration.
In neither case was the decision time significant with respect
to the total response time, which demonstrates that the
Bullpen approach is fast enough to be practical.

Conclusions
Through our work in the distributed simulation domain, we
believe that it is possible to build self-reconfiguring distrib-
uted systems using an abstract interface. The advantages of
developing distributed systems this way include less effort,
less complicated code, and fewer errors. A rule-based abstract
interface is powerful enough to handle the reconfiguration
requirements found in the military distributed simulation
domain. In addition, the response time is fast enough for
virtual simulations.

With Bullpen, we can build compensating reconfigu-
ration components with less initial effort, but more impor-
tant, the code is less complex and easier to modify in re-
sponse to changing requirements. We found that changes to
requirements that involve the virtual world, both the virtual
world and system configuration, the reconfiguration policy,
and the reconfiguration interface showed the greatest gains

Table 2. Categories of change compared to high-level language implementation.

Table 1. Effort compared to high-level language implementation.

Change Category SLOC Time

Virtual Configuration (User Driven) 23% 20%
System Configuration (Prototyping) 35% 85%
Virtual Configuration and System Configuration 11% 17%
Reconfiguration Policy (Prototyping) 28% 37%
Reconfiguration Interface 68% 41%
Conditions 83% 87%

Change Category Locations Defects Repair Time

Virtual Configuration (User Driven) 21% 17% 7%
System Configuration (Prototyping) 63% 100% 100%
Virtual Configuration and System Configuration 25% 100% 100%
Reconfiguration Policy (Prototyping) 19% 14% 8%
Reconfiguration Interface 32% 14% 13%
Conditions 125% 100% 100%

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 23January 1999

using Bullpen. These categories also represent the most com-
mon types of requirements changes that occur in the military
distributed system domain.

The effort and complexity saving shown by this approach
supports prototyping. Experimenting with different mixes of
spare resources and reconfiguration policy should allow the
builders to achieve more effective self-reconfiguring code.
Our approach lowers the cost of this experimentation.

We found that our system was more than powerful
enough to handle the requirements of military distributed
simulations; therefore, we believe that this approach will
generalize to other distributed systems that must reconfigure
themselves during execution in response to changing condi-
tions. Even though our initial work has been with the com-
pensating reconfiguration function as a component of the
distributed program, we believe the proper place for compen-
sating reconfiguration is in the middleware. ◆

About the Authors
Lt. Col. Don Welch is an associate professor
of computer science at the U.S. Military Acad-
emy (USMA). He teaches software engineer-
ing and has experience as an Army software
engineer. His military assignments include
infantry and special missions units. His cur-
rent research interests include dynamic recon-

figuration, software engineering, managing the risk from year
2000 failures, and distributed simulation. He has a bachelor’s
degree from USMA, a master’s degree in computer science from
California Polytechnic State University, and a doctorate from
the University of Maryland.

Department of Electrical Engineering and Computer Science
United States Military Academy
West Point, NY 10996
E-mail: Donald-Welch@usma.edu

Average Incorrect
Change Category Reconfigurations

Virtual Configuration (User Driven) 25%
System Configuration (Prototyping) 100%
Virtual Configuration and System Configuration 100%
Reconfiguration Policy (Prototyping) 11%
Reconfiguration Interface 27%
Conditions 100%

James Purtilo is an associate professor of com-
puter science at the University of Maryland,
where he also holds an appointment in the
Institute for Advanced Computer Studies. He
is a senior member of the Institute of Electri-
cal and Electronics Engineers, having previ-
ously received a doctorate from the University

of Illinois at Urbana. His research is in software engineering,
with a special focus on software interconnection. Most recently,
he served as general chairman for the Fourth International Con-
ference on Configurable Distributed Systems.

Department of Computer Science
University of Maryland
College Park, MD 20741
E-mail: purtilo@cs.umd.edu

References
1. Calvin, J. and D. Van Hook, “Agents: An Architectural Con-

struct to Support Distributed Simulation,” Proceedings of the
11th Distributed Interactive Simulation Standards Workshop,
September 1994.

2. Weatherly, R., A. Wilson, B. Canova, E. Page, A. Zabek, and
M. Fischer, “Advanced Distributed Simulation Through the
Aggregate-Level Simulation Protocol,” 29th International Con-
ference on System Sciences, Wailea, Hawaii, Jan. 3-6, 1996, pp.
407-415.

3. Defense Modeling and Simulation Office, High-Level Architec-
ture Rules, Version 1.2, August 1997.

4. Defense Modeling and Simulation Office, High-Level Architec-
ture Interface Specification, Version 1.2, August 1997.

5. Defense Modeling and Simulation Office, High-Level Architec-
ture Object Model Template, Version 1.1, February 1997.

6. Siegel, J., CORBA Fundamentals and Programming, Wiley
Computer Publishing Group, New York, 1996.

7. Purtilo, J., “The Polylith Software Bus,” ACM Transactions on
Programming Languages, Vol. 16, January 1994, pp. 151-174.

8. Kramer, J. and J. Magee, “The Evolving Philosopher’s Problem:
Dynamic Change Management,” IEEE Transactions on Software
Engineering, Vol. 16, No. 11, November 1990, pp. 1293-1306.

9. Hofmeister, C. and J. Purtilo, “Dynamic Reconfiguration of
Distributed Programs,” Proceedings of the 11th International
Conference on Distributed Computing Systems, 1991, pp. 560-
571.

10. Minsky, N., “Independent On-Line Monitoring of Evolving
Systems,” Proceedings of the 18th International Conference on
Software Engineering,” March 1996.

Note
1. Size includes the number of SLOC added, modified, and re-

moved. If code was made “dead” or nonreachable by other
modifications, it was removed and not counted.

Table 3. Categories of change and performance compared to high-level
language implementation.

Building Self-Reconfiguring Distributed Simulations Using Compensating Reconfiguration

	Contents
	Short-Term Fix Casts Long Shadow…
	Forrest Brown…
	Managing Editor…
	Call for Articles …
	Year 2000 Compliance 1999 Reporting Requirements…
	Improving Software Engineering Practice…
	Patricia Sanders…
	Office of the Undersecretary of Defense for Acquisition and Technology…
	"The Network Is Down …"…
	Capt. Cathy Walter…
	Headquarters, Air Force Communications Agency…
	Inventory Your Network with…
	Simple Network Management Protocol…
	Estimating Y2K Rework Requirements…
	Lee Fischman, Galorath Incorporated…
	Patricia A. McQuaid, California Polytechnic State University…
	Effective Methods for Testing Year 2000 Compliance…
	William E. Perry…
	Quality Assurance Institute…
	Year 2000 (Y2K) Web Sites…
	Coming Events…
	Building Self-Reconfiguring Distributed Simulations Using Compensating Reconfiguration…
	Lt. Col. Don Welch, U.S. Military Academy…
	James Purtilo, University of Maryland…
	Real-World Java Development Experiences…
	A Background Data Collection System…
	Jerome B. Soller, James Clingenpeel, Patrick W. Hayes Jr.,…
	Mark Muday, Brian Larsen, and Tamara Jones…
	CogniTech Corporation…
	Outsourcing and Privatizing Information Technology…
	Re-examining the "Savings"…
	J. Michael Brower…
	Department of Justice, Immigration, and Naturalization Service…
	$^&$*(#)…

